
Positivity wants to break free
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Fig. 1: What happens to positivity in the free (=non-commutative) case?
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Fig. 2: The notion of positivity gives rise to convexity, which itself gives rise to many surprising
effects when interacting with the multiplicity of systems, as in this lithograph by M. C. Escher.

1 Positivity

1.1 Some positive thinking

Natural numbers are used for counting and in thus "natural"—negative num-
bers came later.

Frequencies are described by positive numbers and hence so are probabili-
ties. And probabilities pervade many areas of maths, physics, etc.

Positive things form cones, instead of vector spaces (because adding ends
up in the cone, but subtracting not). Cones are harder to characterise than
vector spaces, because they can have round walls, so may not admit a finite
description.

Cones interact in a non-trivial way with the multiplicity of systems (Fig. 2).
Vector spaces interact in a more "boring" way instead. This already happens for
the classical (i.e. commutative) case, giving rise to nonnegative factorisations,
etc (wait for a couple of minutes).

Quantum theory is like a free version of classical probability theory. So the
question is, first, how to define positivity in the free setting, and second, how
this ’free’ positivity interacts with the multiplicity of systems (Fig. 1)—this is
what this mini-lecture and open problem are about. We will see that the free
setting inherits many of the weird effects from the classical setting, in particular
the separations, but the biggest open question is which new things can happen
in the quantum/free setting.

2



1.2 A first encounter

The rank of a matrix M is the number of linearly independent columns or rows.
That is, it is the minimal r such that

M = AB where A has r columns. (1)

If M is complex, A and B need to be complex. If M is real, A and B can be chosen
real.

There are two main notions of positivity for matrices:

• M is nonnegative: it is entrywise nonnegative. This notion of positivity (or
nonnegativity) is in essence the same as that of a nonnegative vector.

• M is positive semidefinite: it is diagonalisable and has nonnegative eigen-
values. M could thus be real and symmetric, or Hermitian—in either case
with nonnegative eigenvalues. For the quantum case the latter is the im-
portant one. This notion of positivity is inherent to a matrix—the matrix
itself can have complex entries, but its eigenvalues must be nonnegative.
It is unnatural to map this notion of positivity to that of a vector, and
much suffering is associated to doing so...

If M has some notion of positivity, can we decompose M so that it preserves
this notion of positivity? If M is nonnegative, the nonnegative factorisation is
defined as

M = AB where A and B are nonnegative (2)

and the nonnegative rank is the minimal number of columns of A. We denote
it by nn-rank, although often is it is called rank+.This was defined in the early
1990’s in the context of communication complexity.

The following is a noncommutative version of the nonnegative factorisation.
The positive semidefinite (psd) factorisation is defined as

Mi, j = tr(AiB j) where all Ai and B j are positive semidefinite (3)

Note that there need to be as many Ai’s as the number of rows of M, and as
many B j’s as the number of columns of M, so that cannot define a rank. The
psd rank is defined as the minimal size of all Ai’s and B j’s, i.e. the minimal r
such that there exist Ai ∈ PSDr and B j ∈ PSDr such that Mi, j = tr(AiB j) for all
i, j (where PSDr is the set of psd matrices of size r). Usually these psd matrices
are defined in the reals (i.e. they are real symmetric matrices with nonnegative
eigenvalues); for the quantum stuff we care about the Hermitian case. This was
defined in [FMP+12] and surveyed some time ago in [FGP+15].
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In the psd factorisation we could choose the matrices Ai and B j diagonal,
and we would recover a nonnegative factorisation. So it sort of holds that

rank ≤ psd-rank ≤ nn-rank (4)

(There are some missing factors: the actual inequalities are 1
2

√
1 + 8rank(M) −

1
2 ≤ psd-rankR(M) ≤ nn-rank(M)). In plain words this says that it is harder
to decompose with nonnegative numbers than with real numbers (rank ≤
nn-rank), that noncommutativity helps (psd-rank ≤ nn-rank), and that it
doesn’t get smaller than the rank.

1.3 Separations

Now, why is all this interesting? Because the nonnegative rank and the psd rank are
much more expensive than the rank. That is, negative numbers allow for massive
shortcuts in a finite set of sums (even if the result of these sums needs to be
positive).

Formally, there is a separation between each of these ranks. That is, there
is a sequence of matrices Mn (whose size increases with n) such that rank(Mn)
is bounded but nn-rank(Mn) diverges. This means that rank cannot be upper
bounded by a function of nn-rank exclusively. We write

rank� nn-rank (5)

The size of Mn needs to grow with n because both ranks can always be upper
bounded by a function of the size of Mn. This is long known. The same is true
for the rank and psd rank

rank� psd-rank (6)

and for the psd rank and nonnegative rank:

psd-rank� nn-rank (7)

(This was first shown in [GPT13].) So there are separations everywhere!

Message: Imposing local positivity makes a big differ-
ence, i.e. it requires *many* more terms.

1.4 With symmetry

If M is symmetric (i.e. M = Mt if real, and M = M† if complex), it is natural to
consider the three decompositions above in the symmetric case:
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• The symmetric factorisation of M is defined as

M = AAt where A is complex (8)

and the minimal number of columns of A is the symmetric rank.

• The cp factorisation (standing for completely positive) is defined as

M = AAt A nonnegative (9)

and the minimal number of columns of A is the cp rank.

• The cpsd factorisation (standing for completely positive semidefinite) is
defined as

Mi, j = tr(AiA j) Ai psd (10)

and the minimal size of all Ai’s is the cpsd rank (see Fig. 3).

So ’completely’ here means ’symmetric’.

minimal factorisation symmetric factorisation

nonnegative factorisation cp factorisation

psd factorisation cpsdt factorisation

symmetric

nonnegative nonnegative

symmetric

non-commutative non-commutative
symmetric

Fig. 3: Factorisations of nonnegative matrices.

These factorisations have been kind of studied.

1.5 Positivity breaks free

Now, what happens if M is a positive semidefinite matrix, instead of a nonnegative
one? The nonnegative and the psd factorisation of M are not defined, since M
can have negative and complex entries. We need to consider free1 versions of
the decompositions above.

So let M be positive semidefinite (let’s say complex), and bipartite i.e.

M > 0 and M ∈Md ⊗Md, (11)

1Free from the commutation relation, obviously.
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where > 0 means positive semidefinite, andMd is the space of d × d complex
matrices. The following are free / quantum version of the previous factorisations
(Fig. 4):

• The operator Schmidt decomposition of M is

M =

r∑
α=1

Aα ⊗ Bα (12)

and the minimal such r is the osr (standing for operator Schmidt rank).

• The separable decomposition of M is

M =

r∑
α=1

σα ⊗ τα where σα, τα > 0 (13)

where the minimal such r is the separable rank. This only exists if M is
in the convex cone of PSDd × PSDd i.e. separable.

• The local purification of M is

M = LL†, L =

r∑
α=1

Aα ⊗ Bα (14)

where L need not be a square matrix (for the physicists: this the same as a
purification M = traux|ψ〉〈ψ|.) The minimal such r is the purification rank.

• There is also the quantum square root of M where L is the psd square
root of M, and the q-sqrt-rank is the osr of M.

Now with symmetry. Let M be symmetric, i.e. given M =
∑r
α=1 Aα ⊗ Bα,

T(M) =
∑r
α=1 Bα ⊗ Aα = M.

• The t.i. operator Schmidt decomposition (where t.i. stands for transla-
tionally invariant) is defined as

M =

r∑
α=1

Aα ⊗ Aα (15)

and the minimal such r is the ti-osr.

• The t.i. separable decomposition is

M =

r∑
α=1

σα ⊗ σα where σα > 0 (16)

and the minimal such r is the ti-separable rank.
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operator Schmidt decomp. t.i. operator Schmidt decomp.

separable decomp. t.i. separable decomp.

local purification t.i. local purification

symmetric

nonnegative nonnegative

symmetric

non-commutative non-commutative
symmetric

Fig. 4: Factorisations of psd matrices.

• And the t.i. local purification is

M = AA† where A =

r∑
α=1

Bα ⊗ Bα (17)

and the minimal such r is the t.i. purification rank.

If M is diagonal in the computational basis, we recover the "classical" case
above (Table 1), i.e. the generalisation is sensible. Namely, if M = diag(N)
where N is a nonnegative matrix and diag(N) rearranges the entries of N into a
diagonal, the factorisations of the psd matrix M coincide with the factorisations
of the nonnegative matrix N.2

Decomposition of M = diag(N) Decomposition of N
operator Schmidt decomposition minimal factorisation

separable decomposition nonnegative factorisation
local purification complex psd factorisation

t.i. operator Schmidt decomposition symmetric factorisation
t.i. separable decomposition cp factorisation

t.i. local purification complex cpsdt factorisation

Tab. 1: If a psd matrix M is diagonal in the computational basis, M = diag(N) where N is the
nonnegative matrix containing the diagonal of M, then the decompositions of M on the left hand
side are the same as the decompositions of N on the right hand side [DN20].

Moreover, since the quantum version is a generalisation of the classical case,
the separations are inherited:

osr� puri-rank� sep-rank (18)

Some other results are inherited too (in a non-trivial way), like what happens
for rank two / operator Schmidt rank two (Table 2).

2Up to an extra transpose in the cpsd factorisation (giving rise to the cpsdt factorisation).
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Nonnegative matrix M rank(M)
1 Trivial (all ranks the same)
2 nn-rank = psd-rank = 2
3 nn-rank and psd-rank can be unbounded

Psd matrix ρ osr(ρ)
1 Product state (all ranks the same)
2 Separable, and sep-rank = puri-rank = 2
3 puri-rank and sep-rank can be unbounded

Tab. 2: The case of rank 1 is trivial, of rank 2 is easy and fully characterised, and of rank 3 is as hard
as the general case. This is true both for a nonnegative matrix M [FGP+15] and for a bipartite psd
matrix ρ (where rank needs to be substituted by osr) [DDN19].

1.6 Positivity breaks free and multipartite

What if M is positive semidefinite and multipartite? That is,

M ∈Md ⊗ . . . ⊗Md where M > 0 (19)

We should first ask the simpler question where we forget about the positivity:
If M is an element of a tensor product space, in how many ways can it be decomposed?
Namely if

M ∈ V1 ⊗ . . . ⊗ Vn where Vi are vector spaces, (20)

then M can clearly be expressed as a sum of individual tensor elements, but
how are the summation indices arranged? In the tensor rank decomposition
there is a single, common summation index:

M =

r∑
α=1

aα ⊗ bα ⊗ . . . ⊗ zα (21)

(where the minimal such r is the tensor rank), but in the operator Schmidt
decomposition the summation indices are shared between neighbors drawing
in a 1D line:

M =

r∑
α1,...,αn=1

aα1 ⊗ bα1,α2 ⊗ . . . ⊗ zαn−1 (22)

(where the minimal such r is the operator Schmidt rank). In between there are
many other cases: there could be a shared index among the first 3 factors and
a linear structure for the rest, etc, etc.

We model all of these cases with a weighted simplicial complex Ω,3 where

3This is like a hypergraph where the facets can have multiplicity. In fact it is a "well-behaved"
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the vertices are associated to the individual vector spaces and the facets to
the summation indices. For example, for the tensor rank decomposition, the
simplicial complex is the full simplex (here for 3 vertices),

1 2

3

meaning that in

M =

r∑
α=1

v[1]
α ⊗ v[2]

α ⊗ v[3]
α (23)

the index α lives in the facet shared by vertices 1, 2, 3.

In the operator Schmidt decomposition, the simplicial complex is the line
graph

1 2 3
· · ·

n
meaning that in

M =

r∑
α1,...,αn−1=1

v[1]
α1
⊗ v[2]

α1,α2
⊗ v[3]

α2,α3
⊗ . . . ⊗ v[n]

αn−1
(24)

the indices αi live in the edges (which are the facets in this case). If we had
periodic boundary conditions in 1D, we would model this with a circle graph

1

2
3

n − 1
n · ·

·

For every simplicial complex Ω, the minimal number of terms defines the
rankΩ(M).

Now imagine that M is symmetric under some group action G (i.e. g ·M = M
where g ∈ G and g ·M means that g permutes the local vector spaces). Can this
invariance be made explicit? For example

M =

r∑
α=1

vα ⊗ vα ⊗ . . . ⊗ vα (25)

multi-hypergraph, as there are some compatibility relations.
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is clearly invariant under the full symmetry group Sn. In general this invariant
decomposition is called an (Ω,G)-decomposition, and the minimal number of
terms needed is the (Ω,G)-rank [DHN19]. For example the symmetric tensor
rank is the minimal r in (25). The ti-operator Schmidt decomposition is

M =

r∑
α=1

vα1,α2 ⊗ vα2,α3 ⊗ . . . ⊗ vαn,α1 (26)

where G is the cyclic group of order n, and the minimal such r is the ti-osr.
(The main result of [DHN19] is in fact: If M is G-symmetric, it has an (Ω,G)-

decomposition if G acts freely on Ω, and the multiplicity of the facets of Ω can
always be increased so that G acts freely on it.)

Finally we add positivity to obtain the sep-rank(Ω,G) and puri-rank(Ω,G).

Fig. 5: An-
dreas Klingler.

In the approximate case, many separations disappear
[DKN20] (Fig. 5). Approximate means that we consider an ε

ball around the element, in some norm (Schatten p-norm or `p

norm) and we define e.g.

rankε(Ω,G)(M) = min
N∈Bε(M)

rank(Ω,G)(N), (27)

where Bε(M) is the ball around M, and similarly for the other
cases. Our only tool so far to study the approximate case is the
approximate Caratheodory Theorem, which says that the number of elements
needed to express an element of a convex set as a convex combination of terms
at the boundary is independent of the ambient dimension.

1.7 Some open problems

Open problem 1 What new things can happen in the free case? Can we prove
stronger separations in the free case? We don’t have any tool so far.

Intuition: lots of new things should happen because matrices are very
special kinds of tensors. More generally: 2 is easy and 3 is as hard as it gets
(e.g. 2SAT vs. 3SAT). Even more generally: Quantum is very different than
classical.

Open problem 2 What happens for the border rank? Namely what is the (Ω,G)
border rank, purirank, seprank, and their approximate versions?
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2 Extra: Tensor-stable positivity

All maps are linear.

Fig. 6: Mirte
van der Ey-
den.

A map P : Md → Md is positive if it maps positive semidef-
inite matrices to positive semidefinite matrices, i.e. X > 0 =⇒

P (X) > 0. It’s very hard to tell whether a map is positive.
A map is tensor-stable positive if P ⊗n is positive for all n

[MHRW16]. If P is completely positive or co-completely pos-
itive (i.e. completely positive followed by transposition) then it
is tensor-stable positive. These are trivial tensor-stable positive
maps.

(A map is completely positive if idn ⊗ P is positive for all n.
These are very easy to characterise.)

Are there non-trivial tensor-stable positive maps?

If this is the case, then there exist bound entangled states with a non-positive
partial transpose [MHRW16].

Let the "matrix multiplication tensor" be

|χn〉 =

D∑
α1,...,αn=1

|α1, α2〉 ⊗ |α2, α3〉 ⊗ . . . ⊗ |αn, α1〉

and denote the projector on this state by χn = |χn〉〈χn|.

Theorem [DVN21]: Given a map P , it is undecidable
whether P ⊗n(χn) > 0 for all n.

The proof is a reduction from an undecidable matrix product operator prob-
lem in [DCC+16], which itself is a reduction from the matrix mortality problem.

Conjecture: Given a map P , it is undecidable whether
P ⊗n is positive for all n.

Open problem: Can we prove this conjecture? In particular, are there
undecidable problems with a similar structure which could be reduced to the
tensor-stable positivity problem?
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